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Segmentation (e.g. delineating a Region of Interest) is a major 

challenge in 3D image processing.

• Manual method: delineate slice after slice

 Tedious task (especially for huge data as µ-CT);

 Operator-dependent.

• Automatic methods:

 Often based on low-level processing (e.g. thresholding);

 But becomes very complex when:

 poor contrast;

 fuzzy boundaries (artefact, fractured parts…)

→ Idea: use some knowledge on the shape to guide segmentation:

 Shape regularity (e.g. smooth);

 Shape characterization;

 Shape + variability characterization.

Motivations

→ 3D deformable model



• Take a reference 3D mesh of the structure;

• Define :

 External constraints: “attraction” by features in the 3D image (e.g. image discontinuities);

 Internal constraints: keeping the shape regular or close to a specific shape (up to some 

specific variability). 

• Deform iteratively the 3D mesh in the 3D image w.r.t. both constraints.

[C. Xu, D. L. Pham, and J. L. 

Prince, "Medical Image 

Segmentation Using Deformable 

Models," Handbook of Medical 

Imaging -- Volume 2: Medical 

Image Processing and Analysis, 

pp. 129-174, edited by J.M. 

Fitzpatrick and M. Sonka, SPIE 

Press, May 2000]

Principle of 3D 

deformable models

[T. McInerney T, D. 

Terzopoulos. "Deformable 

models in medical image 

analysis: a survey". Med 

Image Anal. 1996 

Jun;1(2):91-108]

→ 2 examples with different implementations 



• Endocranium = inner part of the skull:

→ Gives a 3D rough representation of the brain shape;

→ Great interest, in particular in paleo-anthropology.

• Skull in CT image: good contrast…. but non-closed structure 

→ boundaries are non always defined.

Example 1 : segmenting endocranium

in CT images

http://www.lsis.org/endex/
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• Iterate the process until the vertices Pi  do not move anymore.

• Eventually, add more vertices in the mesh when the distance between the existing vertices 

becomes too large in order to recover the details.
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Pan troglodytes

• CT-Scan of a skull: 209 slices of 512  512 pixels

• Resolution: 0.461  0.461  0.600mm



• Manual localization of the initial deformable surface;

• No more user interaction;

• Fast process (real-time video)

• Result mesh: 398,942 vertices / 797,880 faces

Pan troglodytes



Australopithecus africanus STS5

• CT-Scan of the fossil: 998 slices of 512  512 pixels

• Resolution: 0.348  0.348  0.200 mm

Thanks to S. Potze and 

Prof. F. Thackeray for 

providing data.



• Result mesh: 401,960 vertices / 803,916 faces

Australopithecus africanus STS5



[D. Falk et al. "The Brain of LB1, Homo

floresiensis". Science, 308, 242 (2005)]

(473 cm3).
Our segmentation  (476 cm3)

Australopithecus africanus STS5



In-vivo data

• CT-Scan of the head of a child affected by a plagiocephaly (asymmetrical distortion of the 

skull): 153 slices of 512  512 pixels

• Resolution: 0.488  0.488  1.250 mm



• Manage automatically the fontanels;

• Result mesh: 364,721 vertices / 729,438 faces;

• Could be useful to analyze the 3D deformation of the 

endocranium and of the skull base.

In-vivo data



µ-CT data

• µ-CT-Scan of a mouse: 603 slices of 329  274 pixels / 0.0386  0.0386  0.0415 mm

• Application in biomedical research (genetically modified mouse)



CT-Scan of a potential fossil-bearing block (512×512×1,139 voxels, 

0.9766×0.9766×0.5 mm)..

Poor contrasted CT image with many artefacts → unclear boundaries

Example 2: computer-aided recognition

Thanks to Prof. Lee 

Burger for providing 

data.

See also “Virtual preparation of fossil bones from Cave deposit in the Cradle of 

Humankind” presented by Aurore Val yesterday.



→ Try to identify the bone:

 Define manually some features in the 3D image (<5 mn);

Example 2: computer-aided recognition



Shape characterization will be too limited in this case → Shape + variability characterization.

1. Creation of an average + variability model:

• Database of 3D meshes of the given anatomical structure;

• Register all the 3D meshes on a reference one;

• Compute an average 3D mesh by averaging vertex positions;

• Principal Component Analysis of all the differences w.r.t. to the average 3D mesh

→ Principal modes of variation and their variances.

2. Using the deformable surface

• For each vertex of the 3D average mesh, find the closest feature;

• All correspondences → 3D transformation;

• Project this transformation on the n first principal modes 

→ New transformation which takes into account the variability around the average shape.

• Apply this transformation;

• Increase n in order to get a more detailed transformation;

• Iterate until it converges.

Example 2: computer-aided recognition

 Use a 3D deformable surface of a given anatomical structure to fit features;

B. Gilles, L. Revéret, D.K. Pai. "Creating and animating 

subject-specific anatomical models", Computer Graphics 

Forum, 29(8), pp 2340-2351, 2010.



 Assess the result in the 3D 

image.

 If not, take the model of 

another anatomical structure.



 Deformable models can be used for 

segmentation in many applications in 

3D imaging (e.g. segmentation of thigh 

muscles in MR images);

 May give good results if the shape is 

smooth or can be characterized;

 Very interested to collaborate on this 

topic (palaeoanthropology, medicine, 

geology… ?);

 Some software is freely available for 

testing in specific applications ( 

http://www.lsis.org/endex/ ).

Conclusions

B. Gilles, L. Revéret, D.K. Pai. "Creating and animating 

subject-specific anatomical models", Computer Graphics 

Forum, 29(8), pp 2340-2351, 2010.



Thank you for your attention.


